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Abstract

Stochastic arithmetic involving addition and multiplication by scalars is studied
with an emphasis on the abstract structure of the set of stochastic numbers. New
properties of stochastic numbers are obtained such as a special distributivity relation
corresponding to the second distributivity law in a vector space. This allows us
to introduce algebraic systems abstracting properties of stochastic numbers, with
respect to addition and multiplication by scalars. We define axiomatically such
systems with group structure and give them a complete characterization in the finite
dimensional case. This permits to reduce computation with stochastic numbers to
computation in familiar vector spaces.
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1 Introduction

This work continues our study of the algebraic properties of stochastic num-
bers [1], [2]. We pay special attention to the algebraic properties of stochastic
numbers with respect to the operations addition and multiplication by scalars.
A new distributivity relation for stochastic numbers which corresponds to the
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second distributivity law in a vector space allows us to introduce spaces anal-
ogous to quasilinear spaces which appear in convex analysis [6], [11], and
interval analysis [8], [10].

Stochastic numbers are gaussian random variables with a known mean value
and a known standard deviation. The set of operators on stochastic numbers is
defined as stochastic arithmetic. Stochastic numbers and stochastic arithmetic
are tightly connected to Jean Vignes’ CESTAC method [15], for the following
reason.

Stochastic numbers can be computed in practice using the CESTAC method,
which consists in performing several times each floating point operation with
a random rounding mode. Thus several samples representing the same mathe-
matical result are obtained and it has been proved that these samples generally
have a gaussian distribution. So a close estimation of the mean value, consid-
ered as the exact result and of the standard deviation can be computed using
the classical statistical tools, see [3], [13], [14]. In fact, the CESTAC method
can be considered as a discretization of the computation with stochastic arith-
metic or conversely and more correctly, stochastic arithmetic and stochastic
numbers can be viewed as a continuous modelization of the CESTAC method.
Some fundamental properties of stochastic numbers can be found in [4], [5],
[12], [15].

As the mean values of the stochastic numbers obey the usual real arithmetic
we concentrate on symmetric stochastic numbers (such with mean value zero),
that is on the arithmetic for standard deviations. Standard deviations are
added and multiplied by scalars in a specific way: s1⊕s2 =

√

s2
1 + s2

2, γ∗s = |γ|·
s. As regard to these operations the system of standard deviations is an abelian
monoid with cancellation satisfying certain relations for the multiplication by
scalars. In this work we embed this system in an additive group obtaining thus
a system here called an S-space. We point out a relation between S-spaces and
vector spaces. Using this relation we introduce in S-spaces certain concepts
characteristic for vector spaces, such as linear combination, basis, dimension
etc. Thus computations in S-spaces are reduced to computations in vector
spaces.

Section 2 is devoted to stochastic numbers and the two arithmetic operations
for (symmetric) stochastic numbers: addition and multiplication by scalars.
Section 3 considers a distributivity relation for symmetric stochastic numbers.
Section 4 is devoted to generalized symmetric stochastic numbers forming an
additive group. In Section 5 we discuss the relation between S-spaces and
vector spaces. On the base of this relation a theory of S-spaces is outlined in
Sections 6 and 7.
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2 Stochastic Numbers and Stochastic Arithmetic

By R we denote the set of reals; we use the same notation for the linearly
ordered field of reals R = (R,+, ·,≤). Throughout the paper R can be replaced
by any other linearly ordered field. For any integer n ≥ 1 we denote by R

n

the set of all n-tuples (α1, α2, ..., αn), where αi ∈ R. The set R
n forms a vector

space under the operations of addition and multiplication by scalars denoted
by V n = (Rn,+,R, ·), n ≥ 1. By R

+ we denote the set of nonnegative reals.

A stochastic number X is a gaussian random variable with a known mean
value m and a known standard deviation s and is denoted X = (m; s). The
set of stochastic numbers is denoted S = {(m; s) | m ∈ R, s ∈ R

+}.

Arithmetic operations between stochastic numbers: addition and

multiplication by scalars. Let X1 = (m1; s1), X2 = (m2; s2) ∈ S. (Usual)
equality between two stochastic numbers X1, X2 is: X1 = X2, if m1 = m2

and s1 = s2. In this work we concentrate on the operations addition and
multiplication by scalars respectively noted s+ and s∗ :

The definition of these operators are identical to those of addition of two in-
dependant gaussian functions and of the multiplication of a gaussian function
by a scalar, i.e. :

X1 s+ X2 = (m1; s1) s+ (m2; s2)
def
=

(

m1 +m2;
√

s2
1 + s2

2

)

, (1)

γ s∗ X = γ s∗ (m; s)
def
=

(

γm; |γ|s
)

, γ ∈ R. (2)

The mean values m of the stochastic numbers satisfy the familiar vector space
axioms. We shall concentrate on the standard deviations and their properties.

Symmetric stochastic numbers. A stochastic number of the form (0; s) is
called symmetric. If X1, X2 are symmetric stochastic numbers, then X1 s+ X2

and λ s∗ X1, λ ∈ R, are also symmetric stochastic numbers. Clearly, there is
a one to one correspondence between the set of symmetric stochastic num-
bers and the set R

+ of standard deviations. Moreover the set of symmetric
stochastic is a subset of the set of stochastic zeroes as defined in ([15]).

Addition (1) and multiplication by scalars (2) for symmetric stochastic num-
bers X = (0; s), s ∈ R

+, are:
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X1 s+ X2 =(0; s1) s+ (0; s2) = (0;
√

s2
1 + s2

2),

γ s∗ X = γ s∗ (0; s) = (0; |γ|s), γ ∈ R.

Thus standard deviations s ∈ R
+ are added and multiplied by scalars accord-

ing to the rules: s1 ⊕ s2 =
√

s2
1 + s2

2, γ ∗ s = |γ| · s, γ ∈ R. Here and in the
sequel we use special notation “⊕”, “∗” for the two arithmetic operations be-
tween the standard deviations of stochastic numbers, as these operations are
different from the operations for numbers. The operations “⊕”, “∗” induce a
special arithmetic on the set R

+ of nonnegative numbers, which we shall study
in some detail in the sequel. Thus, consider the system (R+,⊕,R, ∗), where:

α⊕ β=
√

α2 + β2, α, β ∈ R
+, (3)

γ ∗ δ= |γ|δ, γ ∈ R, δ ∈ R
+. (4)

Setting γ = α2, δ = β2, we can write (3) in the form

√
γ ⊕

√
δ =

√

γ + δ, γ, δ ∈ R
+. (5)

For example: 1⊕1 =
√

2, 1⊕2 =
√

5, 3⊕4 = 5,
√

3⊕
√

5 =
√

8, (−1)∗4 = 4,
(−2) ∗ 4 = 8, etc. Note that s⊕ s =

√
2s =

√
2 ∗ s.

Proposition 1 The system (R+,⊕,R, ∗) is an abelian monoid with cancella-
tion, such that for s, t ∈ R

+, α, β ∈ R:

α ∗ (s⊕ t)=α ∗ s⊕ α ∗ t, (6)

α ∗ (β ∗ s)= (αβ) ∗ s, (7)

1 ∗ s= s, (8)

(−1) ∗ s= s. (9)

Proof. From α⊕ (β⊕ γ) = α⊕
√
β2 + γ2 =

√
α2 + β2 + γ2 and (α⊕ β)⊕ γ =√

α2 + β2 ⊕ γ =
√
α2 + β2 + γ2 we conclude that (R+,⊕) is a semigroup. As

α ⊕ 0 =
√
α2 = α, we see that (R+,⊕) is a monoid with neutral element 0.

Commutativity is obvious. Cancellation law: α⊕x = β⊕x implies
√
α2 + x2 =√

β2 + x2, i. e. α2 = β2, that is α = β. The equalities α∗s⊕α∗t = |α|s⊕|α|t =√
α2s2 + α2t2 = |α|

√
s2 + t2 = α ∗ (s⊕ t) prove (6). The rest is obvious. �

Note that multiplication by −1 (also called negation) satisfies for s ∈ R
+:

(−1) ∗ s = | − 1|s = s. Thus, negation coincides with identity, whereas in
a vector space (such as the vector space of mean values) it coincides with
opposite.
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Note that none of the relations (6)–(9) indicates for a possibility to factor out
a common multiplier s in an expression of the form α ∗ s ⊕ β ∗ s. We need a
relation that corresponds to the familiar second distributive law in a vector
space: (α+ β)c = αc+ βc. We shall derive such a relation in the next section.

3 Distributivity Relation for Stochastic Numbers

Remember that as mentioned earlier we only deal here with standard-deviations
as mean-values satisfy the vector space axioms.

Proposition 2 For α, β ≥ 0, s ∈ R
+, we have:

√

α2 + β2 ∗ s = α ∗ s⊕ β ∗ s, (10)

or, equivalently, for γ, δ ≥ 0, s ∈ R
+:

√

γ + δ ∗ s =
√
γ ∗ s⊕

√
δ ∗ s. (11)

Proof. Using (3), (4) we have:

α ∗ s⊕ β ∗ s= |α|s⊕ |β|s =
√

(αs)2 + (βs)2

=
√

α2 + β2s =
√

α2 + β2 ∗ s.

To obtain (11) set γ = α2, δ = β2 in (10). �

Remark. We can write (10) in the form (α⊕ β) ∗ s = α ∗ s⊕ β ∗ s. However,
note that the “⊕” in the left-hand side of this equality is a shorthand notation
for an expression in the field of scalars, namely α ⊕ β =

√
α2 + β2, whereas

the “⊕” in the right-hand side is the additive operation in the set of standard
deviations.

Let us note that relation (10) implies 0 ∗ s = 0. Indeed, setting α = 0, β = 1
in (10) we obtain 1 ∗ s = 0 ∗ s+ 1 ∗ s, that is 0 ∗ s = 0.

Combining proposition 1 and proposition 2 we obtain:

Proposition 3 The system (R+,⊕,R, ∗) is an abelian monoid with cancella-
tion, such that for s, t ∈ R

+, α, β ∈ R:
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α ∗ (s⊕ t) =α ∗ s⊕ α ∗ t, (12)

α ∗ (β ∗ s)= (αβ) ∗ s, (13)

1 ∗ s= s, (14)

(−1) ∗ s= s, (15)
√

α2 + β2 ∗ s=α ∗ s⊕ β ∗ s, α, β ≥ 0. (16)

A system satisfying the conditions of proposition 3 will be further called an
S-space of monoid structure. Namely, we have (below we denote the additive
operation just by “+”):

Definition 4 A system (R+,+,R, ∗) is called an S-space with monoid struc-
ture if (R+,+) is an abelian monoid with cancellation, and for s, t ∈ R

+,
α, β ∈ R:

α ∗ (s+ t) =α ∗ s+ α ∗ t, (17)

α ∗ (β ∗ s)= (αβ) ∗ s, (18)

1 ∗ s= s, (19)

(−1) ∗ s= s, (20)
√

α2 + β2 ∗ s=α ∗ s+ β ∗ s, α, β ≥ 0. (21)

Representation by variances. Stochastic numbers can be represented al-
ternatively by means of mean-values and variances v = s2, i. e. as pairs of
the form: X = (m; v). Then the sum of two stochastic numbers (m1; v1) and
(m2; v2) is (m1+m2; v1+v2), whereas the product of (m; v) by a scalar γ ∈ R is
(γm; γ2v). Hence variances are added as usually but are multiplied by scalars
according to the formula

γ � v = γ2v, γ ∈ R, (22)

e. g.
√

2 � v = 2v, (−2) � v = 4v, etc.

Proposition 5 The system (R+,+,R, �) is an S-space of monoid structure.

Proof. We have to check that relations (17)–(21) are satisfied. Consider for
example (21). We have α � v+β � v = α2v+β2v = (α2 +β2)v =

√
α2 + β2 � v.

�

Note that v + v = 2v =
√

2 � v.
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4 The Group System

For α ∈ R denote σ(α) = {+, α ≥ 0;−, α < 0}. We shall use σ(α) instead of
sign(α) if placed in front of a number, e. g. σ(α)α2 is same as sign(α)α2.

It is convenient to define in R a “signed square root”:

√
γ

◦ = σ(γ)
√

|γ|, γ ∈ R. (23)

Thus,
√
γ ◦ =

√
γ for γ ≥ 0, but

√
γ ◦ = −

√

|γ| for γ < 0. Note that the
values of the signed square root

√
γ ◦ for γ < 0 are negative real numbers and

not complex numbers, e. g.
√
−4

◦
= −2.

We now extend (3) for all α, β ∈ R:

α⊕ β =
√

σ(α)α2 + σ(β)β2
◦

, (24)

or, in usual terms:

α⊕ β=σ(σ(α)α2 + σ(β)σ2)
√

|σ(α)α2 + σ(β)β2|
=σ(α + β)

√

|σ(α)α2 + σ(β)β2|,

noticing that for α, β ∈ R:

σ(α + β) = σ(σ(α)α2 + σ(β)β2) = σ(α⊕ β). (25)

Proposition 6 The system (R,⊕), where “⊕” is defined by (24), is an abelian
group with null 0 and opposite opp(α) = −α, i. e. α⊕ (−α) = 0.

In other words (R+,⊕) is embedded isomorphically in (R,⊕).

Example 7 1⊕1 =
√

2, 1⊕2 =
√

5, 3⊕4 = 5, 5⊕ (−4) = 3, 4⊕ (−5) = −3,
(−3)⊕ (−4) = −5, 1⊕ 2⊕ 3 =

√
14.

Addition of generalized standard deviations. We can look at formula
(24) as an extension of the expression α ⊕ β, α, β ≥ 0, to arbitrary scalars
α, β ∈ R. On the other side we can interpret (24) as an operation on standard
deviations, which has been now extended for generalized standard deviations
(including improper, negative ones). In other words we isomorphically extend
the set R

+ of (usual, proper) standard deviations to the set R of general-
ized ones, admitting also improper (negative) standard deviations s < 0. The
opposite in (R,⊕) will be denoted opp(α) = α−.
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Multiplication by scalars. Multiplication by scalars is extended on the set
R of generalized standard deviations by: γ ∗ s = |γ|s, s ∈ R. Multiplication by
−1 (negation) will be denoted ¬s = (−1) ∗ s. Thus in R we have (−1) ∗ s =
| − 1|s = s, s ∈ R.

It is easy to check that relations (17)–(21) hold true for generalized standard
deviations s, t ∈ R. This justifies the following definition:

Definition 8 A system (S,⊕,R, ∗), such that: i) (S,⊕) is an abelian additive
group, and ii) for any s, t ∈ S and α, β ∈ R:

α ∗ (s⊕ t) =α ∗ s⊕ α ∗ t, (26)

α ∗ (β ∗ s)= (αβ) ∗ s, (27)

1 ∗ s= s, (28)

(−1) ∗ s= s, (29)
√

α2 + β2 ∗ s=α ∗ s⊕ β ∗ s, α, β ≥ 0, (30)

is called an S-space over R with group structure or just an S-space over R.

Example 9 For any integer k ≥ 1 the set S = R
k of all k-tuples (α1, α2, ..., αk),

where αi ∈ R and (α1, α2, ..., αk) = (β1, β2, ..., βk) whenever α1 = β1, α2 =
β2, ..., αk = βk, forms an S-space over R under the following operations

(α1, ..., αk)⊕ (β1, ..., βk)= (α1 ⊕ β1, ..., αk ⊕ βk), (31)

γ ∗ (α1, α2, ..., αk)= (|γ|α1, |γ|α2, ..., |γ|αk), γ ∈ R, (32)

where α⊕ β =
√

σ(α)α2 + σ(β)β2
◦
, cf. (24).

The S-space Sk
(s) = (Rk,⊕,R, ∗) will be called the canonical S-space of stan-

dard deviations. Note that multiplication by −1 (negation) in Sk
(s) is same as

identity: ¬(α1, ..., αk) = (α1, ..., αk), while the opposite operator is:

opp(α1, α2, ..., αk) = (α1, α2, ..., αk)− = (−α1,−α2, ...,−αk). (33)

We have Sk
(s) =

⊕

kS
1
(s); here

⊕

k means direct sum taken k times.

Example 10 For any integer k ≥ 1 the set S = R
k of all k-tuples (α1, α2, ..., αk),

where αi ∈ R and (α1, α2, ..., αk) = (β1, β2, ..., βk) if and only if α1 = β1, α2 =
β2, ..., αk = βk, forms an S-space over R under the following operations

(α1, α2, ..., αk) + (β1, β2, ..., βk) = (α1 + β1, ..., αk + βk), (34)

γ � (α1, α2, ..., αk) = (γ2α1, γ
2α2, ..., γ

2αk), γ ∈ R. (35)
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This S-space will be denoted by Sk
(v) = (Rk,+,R, �) and called the canonical

S-space of variances. Negation is the same as identity and opposite is (33).
We have Sk

(v) =
⊕

kS
1
(v).

Rules for computation in an S-space. Assume that S,⊕,R, ∗) is an S-
space.

Relation (30) contains the condition α, β ≥ 0 and thus is not convenient for
algebraic computations. We shall next derive an unconditional relation, which
will imply (30) as a special case.

Denote s+ = s. Since s− = opp(s), the notation sλ makes sense for any
λ ∈ {+,−}.

Proposition 11 Assume that (S,⊕,R, ∗) is an S-space over R. For all α, β ∈
R and all s ∈ S we have

√

|σ(α)α2 + σ(β)β2| ∗ sσ(α+β) = α ∗ sσ(α) ⊕ β ∗ sσ(β), (36)

or, equivalently,

√

|γ + δ| ∗ sσ(γ+δ) =
√

|γ| ∗ sσ(γ) ⊕
√

|δ| ∗ sσ(δ). (37)

Proof. For αβ ≥ 0, the element s ∈ S satisfies relation (36), due to (30).
We consider other cases. Assume that 0 ≤ −β ≤ α, and hence α2 − β2 =
σ(α)α2 + σ(β)β2 ≥ 0. Using (30) we obtain for s ∈ S:

α ∗ s =
√

(α2 − β2) + β2 ∗ s =
√
α2 − β2 ∗ s⊕ β ∗ s.

Thus for s ∈ S, α∗s =
√
α2 − β2∗s⊕β∗s, and hence α∗s⊕β∗s− =

√
α2 − β2∗s,

showing that (36) is true in this case. Other cases are treated similarly. To
obtain (37) substitute in (36) γ = σ(α)α2, δ = σ(β)β2. �

Relation (36) can be written as:

(α⊕ β) ∗ sσ(α+β) = α ∗ sσ(α) ⊕ β ∗ sσ(β), (38)

or as:
(α⊕ β) ∗ sσ(α⊕β) = α ∗ sσ(α) ⊕ β ∗ sσ(β). (39)

Remarks. 1) The above formulae imply that the element s can be factored
out in an expression of the form α ∗ sσ(α) ⊕ β ∗ sσ(β). The same is true for an
expression of the form: α∗sσ(α)⊕β∗sσ(−β) as we can then set γ = −β and obtain
an expression of the previous form (using that β ∗ sσ(−β) = (−β) ∗ sσ(−β) =
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γ ∗ sσ(γ)). 2) Note that α ⊕ β in the left-hand side of (38) is a shorthand
notation (24) for a scalar from the field R = (R,+, ·), whereas α ∗ s⊕ β ∗ s is
an element of S.

Using (23) formula (5) can be extended as follows:

√
γ

◦ ⊕
√
δ

◦
=
√

γ + δ
◦

, γ, δ ∈ R. (40)

Using (23) we can write (37) as

√

α + β
◦

∗ sσ(α+β) =
√
α

◦ ∗ sσ(α) ⊕
√

β
◦

∗ sσ(β), (41)

minding that the sign of the scalar δ in the expression δ ∗ s does not matter
(due to δ ∗ s = −δ ∗ s = |δ| ∗ s).

It follows from proposition 11 that if we substitute (30) in Definition 8 by
(36), resp. (38), then we obtain an equivalent definition of S-space, that is
Definition 8 is equivalent to:

Definition 12 A system (S,⊕,R, ∗), such that (S,⊕) is an abelian additive
group, and for any s, t ∈ S and α, β ∈ R:

α ∗ (s⊕ t) =α ∗ s⊕ α ∗ t, (42)

α ∗ (β ∗ s) = (αβ) ∗ s, (43)

1 ∗ s= s, (44)

(−1) ∗ s= s, (45)

(α⊕ β) ∗ sσ(α+β) =α ∗ sσ(α) ⊕ β ∗ sσ(β), (46)

is called an S-space over R.

We next consider a relation between S-spaces and vector spaces.

5 Relation Between S-spaces and Vector Spaces

5.1 Vector Spaces Induced by S-spaces

Let (S,+,R, ∗) be an S-space over R. Define the operation “·”: R× S −→ S

by

α · c =
√

|α| ∗ cσ(α) =
√
α

◦ ∗ cσ(α), α ∈ R, c ∈ S. (47)
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Equality (47) is equivalent to:

σ(α)α2 · c = α ∗ cσ(α), α ∈ R, c ∈ S, (48)

the latter meaning: α2 · c = α ∗ c, if α ≥ 0 and −α2 · c = α ∗ c−, if α < 0.

Proposition 13 Let (S,+,R, ∗) be an S-space over R. Then (S,+,R, ·), with
“·” defined by (47), is a vector space over R, that is for every α, β, γ ∈ R,
a, b, c ∈ S:

γ · (a+ b) = γ · a + γ · b, (49)

α · (β · c) = (αβ) · c, (50)

1 · a= a, (51)

(α + β) · c=α · c+ β · c. (52)

Proof. To prove (49) substitute a = cσ(γ), b = dσ(γ) in γ ∗(a+b) = γ ∗a+γ ∗b.
We obtain γ ∗ (cσ(γ) + dσ(γ)) = γ ∗ cσ(γ) + γ ∗ dσ(γ), or γ ∗ (c + d)σ(γ) =
γ ∗ cσ(γ) + γ ∗ dσ(γ). This implies σ(γ)γ2 · (c+ d) = σ(γ)γ2 · c+ σ(γ)γ2 · d, for
all c, d ∈ S, γ ∈ R. This is equivalent to (49) if we set α = σ(γ)γ2.

To prove (50) substitute c = dσ(β) in the relation α∗(β ∗c) = (αβ)∗c to obtain
α∗ (β ∗dσ(β)) = (αβ)∗dσ(β). Using (48) we have α∗ (σ(β)β2 ·d) = (αβ)∗dσ(β),
which implies α ∗ (β · d)σ(α) = (αβ) ∗ dσ(β)σ(α) = (αβ) ∗ dσ(βα), or, using (48),
σ(α)α2(σ(β)β2 · d) = σ(αβ)(αβ)2 · d, that is (50).

Relation (51): 1 ·a = a is obviously true. Relation (52): (α+β) ·c = α ·c+β ·c,
resp. (−1) · a + a = 0, follows from (46) using (48). Indeed, using (25), (47)
and (48) we obtain (σ(α)α2 + σ(β)β2) · s = σ(α)α2 · s + σ(β)β2 · s which is
equivalent to (52).

We thus proved that (S,+,R, ·) is a vector space. �

Operation (47) is well defined on R× S for any S-space S over R; it may be
called linear multiplication in S, whereas, by contrast, the original multiplica-
tion “∗” in R×S may be called s-multiplication. The above proposition implies
that every S-space (S,+,R, ∗) involves a linear multiplication and hence an as-
sociated vector space (S,+,R, ·). Note that the element (−1) ·a = (−1)∗a− =
a− is the opposite to a in S, opp(a) = a−, as we have: a + (−1) · a = 0.

The two spaces (S,+,R, ∗) and (S,+,R, ·) are equivalent in the sense that
every expression in the first space can be presented in terms of the operations
of the second space, and vice versa. Thus we have:

Proposition 14 Every S-space over R induces via (47) an equivalent vector
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space over R.

5.2 S-spaces Induced by Vector Spaces

Let (S,+,R, ·) be a vector space over R. It can be immediately seen that the
system (S,+,R, ∗), where “∗” is defined by

α ∗ c = σ(α)α2 · cσ(α) = α2 · c (53)

is an S-space over R. The two spaces (S,+,R, ∗) and (S,+,R, ·) are equivalent.
Thus we have:

Proposition 15 Every vector space over R induces via (53) an equivalent
S-space over R.

Note that the spaces (S,+,R, ∗) and (S,+,R, ·), although equivalent, are gen-
erally distinct from each other as they have different operations for multipli-
cation by scalars.

The last two propositions can be summarized as follows: Every S-space over
R generates via (47) an equivalent vector space and, vice versa, every vector
space over R induces via (53) an equivalent S-space over R.

One can make use of both operations for multiplication by scalars simultane-
ously. The system (S,+,R, ·, ∗) can be viewed either as a vector space over
R endowed with the operation (53) or as an S-space over R endowed via (47)
with the operation “·”. In (S,+,R, ·, ∗) one has two different notations for the
opposite operator. Namely, opposite is denoted in (S,+,R, ·) by opp(a) = −a,
whereas in (S,+,R, ∗) one writes opp(a) = a−.

Using that the spaces (S,+,R, ·) and (S,+,R, ∗) are equivalent we can transfer
familiar concepts from the theory of vector spaces to S-spaces. In what follows
we briefly outline this idea.

6 Vector space concepts in S-spaces

Assume that S = (S,+,R, ∗) is an S-space over R and (S,+,R, ·) is the as-
sociated equivalent vector space. From the vector space (S,+,R, ·) we can
transfer vector space concepts, such as linear combination, linear dependence,
basis etc., to the S-space (S,+,R, ∗). For example, the concept of linear com-
bination obtains the following form.
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Let c(1), c(2), ..., c(k), k ≥ 1, be finitely many (not necessarily distinct) elements
of S and let f =

∑k
i=1 γi·c(i) = γ1·c(1)+γ2·c(2)+...+γk·c(k) with γ1, γ2, ..., γk ∈ R

be a linear combination of c(1), c(2), ..., c(k) in the vector space (S,+,R, ·). Using
(47) we introduce a linear combination in the S-space (S,+,R, ∗) by

f =
√

|γ1| ∗ c(1)σ(γ1) +
√

|γ2| ∗ c(2)σ(γ2) + ...+
√

|γk| ∗ c(k)
σ(γk). (54)

Setting αi =
√
γi

◦, we can rewrite (54) as

f = α1 ∗ c(1)σ(α1) + α2 ∗ c(2)σ(α2) + ...+ αk ∗ c(k)
σ(αk). (55)

Proposition 16 The set

span{c(1), c(2), ..., c(k)} = {
k
∑

i=1

αi ∗ c(i)σ(αi)
| αi ∈ R} (56)

of all linear combinations of c(1), c(2), ..., c(k) is a subspace of S.

Further, the elements c(1), c(2), ..., c(k) ∈ S, k ≥ 1, are linearly dependent (over
R), if there exists a nontrivial linear combination of {c(i)}, which is equal to
0, i. e. if there exist a system {αi}k

i=1 with not all αi equal to zero, such that

α1 ∗ c(1)σ(α1) + α2 ∗ c(1)σ(α2) + ...+ αk ∗ c(k)
σ(αk) = 0. (57)

The elements c(1), c(2), ..., c(k) ∈ S are linearly independent, if (57) is possible
only for the trivial linear combination, such that αi = 0 for all i = 1, ..., k.

6.1 Linear Mappings in S-spaces

Let Q1 = (Q1,+,R, ∗), Q2 = (Q2,+,R, ∗) be two S-spaces

over R and let ϕ : Q1 −→ Q2 be a linear (homomorphic) mapping, that is:

ϕ(x + y)=ϕ(x) + ϕ(y), (58)

ϕ(γ ∗ x) = γ ∗ ϕ(x), x, y ∈ Q1, γ ∈ R. (59)

It is easy to check that ϕ(x−) = (ϕ(x))−; more generally any linear mapping
satisfies:
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ϕ(α1 ∗ x(1)
σ(α1) + α2 ∗ x(2)

σ(α2) + ... + αk ∗ x(k)
σ(αk)) = (60)

α1 ∗ ϕ(x(1))σ(α1) + α2 ∗ ϕ(x(2))σ(α2) + ...+ αk ∗ ϕ(x(k))σ(αk),

where α1, α2, ..., αk ∈ R, x(1), x(2), ..., x(k) ∈ Q1. In particular:

ϕ(α ∗ xλ + β ∗ yµ) = α ∗ ϕ(x)λ + β ∗ ϕ(y)µ, x, y ∈ Q1, α, β ∈ R. (61)

Obviously condition (61) completely characterizes a linear mapping and can
substitute conditions (58) and (59).

Let (S,+,R, ∗) be an S-space, x(1), x(2), ..., x(n) ∈ S and let Sn
(s) = (Rn,⊕,R, ∗)

be the canonical S-space defined in Example 9. The mapping ϕ : Sn
(s) −→ S,

such that

ϕ(α1, α2, ..., αn) = α1 ∗ x(1)
σ(α1) + α2 ∗ x(2)

σ(α2) + ...+ αn ∗ x(n)
σ(αn), (62)

is linear. Indeed, relations (58) and (59) are satisfied:

ϕ((α1, α2, ..., αn)⊕ (β1, β2, ..., βn)) = ϕ(α1 ⊕ β1, α2 ⊕ β2, ..., αn ⊕ βn)

= (α1 ⊕ β1) ∗ x(1)
σ(α1+β1)

+ ... + (αn ⊕ βn) ∗ x(n)
σ(αn+βn)

= α1 ∗ x(1)
σ(α1) + ... + αn ∗ x(n)

σ(αn) + β1 ∗ x(1)
σ(β1) + ...βn ∗ x(n)

σ(βn)

= ϕ(α1, α2, ..., αn) + ϕ(β1, β2, ..., βn);

ϕ(γ ∗ (α1, α2, ..., αn)) = ϕ(|γ|α1, |γ|α2, ..., |γ|αn)

= (|γ|α1) ∗ x(1)
σ(|γ|α1) + ...+ (|γ|αn) ∗ x(k)

σ(|γ|αn))

= (|γ|α1) ∗ x(1)
σ(α1) + ... + (|γ|αn) ∗ x(k)

σ(αn))

= |γ| ∗ ϕ(α1, α2, ..., αn) = γ ∗ ϕ(α1, α2, ..., αn).

Denote the n-vector e(i) = (0, 0, ..., 0, 1, 0, ..., 0), where the component 1 is on

the i-th place. We consider e(i) as element of S(s)
n, where opp(e(i)) = e

(i)
− and

¬e(i) = e(i). Relation (62) implies

ϕ(e(i)) = αi ∗ x(i)
σ(αi)

|αi=1= x(i), i = 1, ..., n. (63)

The mapping ϕ is the only linear mapping from Sn to S with the property
(63). Indeed, if (63) holds, then by (60),

ϕ(α1, α2, ..., αn) =ϕ(
∑

αi ∗ e(i)σ(αi)
)

=
∑

αi ∗ ϕ(e(i))σ(αi) =
∑

αi ∗ x(i)
σ(αi)

.
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We thus obtain that relation (63): ϕ(e(i)) = x(i), i = 1, ..., n, is sufficient to
determine the mapping (62). As in the case of vector spaces, every mapping
of the set (e(1), ..., e(n)) into S of the form ϕ(e(i)) = x(i), i = 1, ..., n, can be
extended to a unique linear mapping of Sn

(s) into S.

We shall now prove that the spaces from Examples 9 and 10 are isomorphic.

Proposition 17 The spaces Sk
(s) = (Rk,⊕,R, ∗), Sk

(v) = (Rk,+,R, �) with
operations ⊕, ∗,+, �, defined by (31), (32), (34), (35), are isomorphic.

Proof. For simplicity we shall consider the case k = 1, the general case is
straightforward; denote S(s) = S1

(s), S(v) = S1
(v).

Consider the operator φ : S(s) −→ S(v), defined by

φ(x) = σ(x)x2.

Note that φ(
√
y◦) = y for y ∈ R. We shall show that the operator φ is linear.

Indeed, we have:

φ(x⊕ y)=φ(
√

σ(x)x2 + σ(y)y2) = σ(x)x2 + σ(y)y2 = φ(x) + φ(y);

φ(γ ∗ x) =φ(|γ| · x) = γ2 · (σ(x)x2) = γ � (σ(x)x2) = γ � φ(x),

which proves the theorem. �

Remark. Alternatively, one can prove that the operator ψ : S(v) −→ S(s),
defined by

ψ(u) =
√
u
◦
,

is linear. Indeed, using (40) we have:

ψ(u+ v)=
√
u+ v

◦
=
√
u
◦ ⊕

√
v
◦

= ψ(u)⊕ ψ(v);

ψ(δ � u)=ψ(δ2 · u) =
√
δ2 · u◦ = |δ| ·

√
u
◦

= δ ∗
√
u
◦

= δ ∗ ψ(u).

As the two spaces Sk
(s) and Sk

(v) are isomorphic, we may write Sk meaning any
one of the two spaces.

7 Basis in an S-space

Let S be a S-space over R. The set {c(i)}k
i=1, c

(i) ∈ S, k ≥ 1, is a basis of S, if
c(i) are linearly independent and S = span{c(i)}k

i=1.
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Proposition 18 A set {c(i)}k
i=1, c

(i) ∈ S, k ≥ 1, is a basis of S, iff every
f ∈ S can be presented in the form (55) in a unique way (i. e. with unique
scalars αi).

Let S be a S-space over R and {c(i)}k
i=1 be a basis of S. Assume that a =

∑k
i=1 αi ∗ c(i)σ(αi)

, b =
∑k

i=1 βi ∗ c(i)σ(βi)
are two elements of S. Their sum is

a+ b =
k
∑

i=1

αi ∗ c(i)σ(αi)
+

k
∑

i=1

βi ∗ c(i)σ(βi)
=

k
∑

i=1

(αi ⊕ βi) ∗ c(i)σ(αi+βi)
. (64)

Multiplication by scalars is given by

γ ∗ a =
k
∑

i=1

|γ|αi ∗ c(i)σ(αi)
=

k
∑

i=1

|γ|αi ∗ c(i)σ(|γ|αi)
. (65)

To every a =
∑k

i=1 αi ∗ c(i)σ(αi)
∈ S we associate the vector (α1, α2, ..., αk).

Then, minding formulae (64), (65), we define addition and multiplication by
scalars by means of (34), (35), arriving thus to the canonic S-space Sk

(s) =

(Rk,⊕, ,R, ∗) considered in example 9.

As we know, negation in S is same as identity. Opposite in S is a− = opp(a) =
∑k

i=1 αi ∗ c(i)−σ(αi)
=
∑k

i=1(−αi) ∗ c(i)σ(−αi)
, or, in terms of Sk

(s) = (Rk,⊕,R, ∗) we
obtain (33).

Theorem 19 Any S-space over R, with a basis of k elements, is isomorphic
to Sk.

Proof. Let S be a S-space spanned over a finite basis s(1), s(2), ..., s(k). The
linear mapping ϕ : Sk −→ S, Sk = (Rk,⊕,R, ∗), defined by

ϕ(α1, α2, ..., αk) = α1 ∗ s(1)
σ(α1) + α2 ∗ s(2)

σ(α2) + ...+ αk ∗ s(k)
σ(αk),

is a bijection. Hence ϕ is an isomorphism. �

Let S be a S-space spanned over a finite basis s(1), s(2), ..., s(k). As in the vector
case, the number k (which does not change with the particular basis) will be
called dimension of S.

Stochastic numbers (m; s) can be considered as elements of a direct sum V ⊕S

of a vector space V and a S-space S. Assume that V and S have finite bases
of dimension k. Namely, let V = Vk be a k-dimensional vector space with a
basis (v(1), ..., v(k)) and let S = Sk be a k-dimensional S-space having a ba-
sis (s(1), ..., s(k)). Then we say that (v(1), ..., v(k); s(1), ..., s(k)) is a basis of the
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k-dimensional space Vk ⊕ Sk. Such a setting allows us to consider numerical
problems involving vectors and matrices, wherein the numeric variables have
been substituted by stochastic ones. The following example presents a linear
system Ax = b, such that the right-hand side vector b consists of stochas-
tic numbers. Then the solution vector x also consists of stochastic numbers,
and, respectively, all arithmetic operations (additions and multiplications by
scalars) in the expression Ax are interpreted in the spirit of this work (there-
fore we write A s∗ x instead of Ax).

Example 20 An algebraic problem. Assume that A = (αij)
n
i,j=1, αij ∈ R is

a real n× n-matrix, and b = (b′; b′′) is an n-vector of (generalized) stochastic
numbers, such that b′, b′′ ∈ R

n. We look for a (generalized) stochastic vector
x = (x′; x′′), x′, x′′ ∈ R

n, that is an n-vector of stochastic numbers, such that
A s∗ x = b.

Solution. Clearly, the system A s∗ x = b reduces to a linear system Ax′ = b′

for the vector x′ of mean values and a system A ∗ x′′ = b′′ for the “vector” x′′

of standard deviations.

The elements of the vector A ∗ x′′ are ci = αi1 ∗ x′′1 ⊕ ...⊕ αin ∗ x′′n, i = 1, ..., n.

Setting sign(x′′i )(x
′′
i )

2 = yi, sign(b′′i )(b
′′
i )

2 = ci, we obtain a linear n× n system
Dy = c for y = (yi), where D = (α2

ij). If D is nonsingular we can solve
the system Dy = c for the vector y, and then obtain the standard deviation

vector x by means of xi =
√
yi

◦ = sign(yi)
√

|yi|. Thus for the solution of the

original problem it is necessary and sufficient that both matrices A = (αij)
and D = (α2

ij) are nonsingular.

8 Conclusion

In this work we outline an algebraic theory of stochastic numbers related to
the operations addition and multiplication by scalar. In the development of
this theory we follow similar studies related to convex bodies and intervals.
[1], [2], [6], [9].

A fundamental relation for the present theory is the distributivity property
(10) for standard deviations corresponding to the second distributive law in a
vector space.

The above theoretic study of the properties of stochastic numbers allow us to
obtain rigorous abstract definition of stochastic numbers with respect to the
operations addition and multiplication by scalars. Our theory also allows us to
solve algebraic problems with stochastic numbers (like the problem given at
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the end of the last section). This gives us a possibility to compare algebraically
obtained results with practical applications of stochastic numbers, such as the
ones provided by the CESTAC method [3]. Such comparisons will give addi-
tional information related to the stochastic behaviour of random roundings in
the course of numerical computations.

Future work. The present work is a step towards the formalization of the
concept of stochastic numbers in the manner this has been done with real num-
bers. A further step would concern properties of stochastic numbers related
to (inner) multiplication and certain order relations.
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